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Abstract
The addition and the Detweiler and Reiter algebraic analogue of Katz’s
middle convolution are certain transformations of Fuchsian systems. Their
compositions are useful to get nontrivial relations between solutions of these
systems. The aim of this paper is to study the result of these transformations for
a 2 × 2 linear Fuchsian system with triangular matrices and four singularities;
the isomonodromy deformations of which are given by the hypergeometric
functions.

PACS number: 02.30.Hq

1. The hypergeometric equation and monodromy preserving deformations of
Fuchsian systems

The hypergeometric equation

t (1 − t) u′′ + {c − (a + b + 1) t} u′ − a b u = 0, (1)

where ′ = d/dt and a, b, c are arbitrary parameters, appears in many areas of pure and applied
mathematics, theoretical physics and statistics. For instance, many orthogonal polynomials
are defined with the help of the hypergeometric-type functions. The only singularities of the
equation (and of the solutions, since the equation is linear) are t = 0, 1 and ∞. The famous
Gauss hypergeometric function is a solution to (1). We refer the reader to [1], [6, vol I] for a
basic theory of the hypergeometric functions.

Let us briefly recall the notion of isomonodromy deformations of linear systems following
[11–13, 15].

Let
d

dλ
� = A(λ)�, A(λ) ∈ SL(n, C) (2)

be a linear n × n system with the matrix given by

A(λ) =
N∑

k=1

Ak

λ − tk
,

1751-8113/10/175204+10$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/17/175204
mailto:filipuk@mimuw.edu.pl
http://stacks.iop.org/JPhysA/43/175204


J. Phys. A: Math. Theor. 43 (2010) 175204 G V Filipuk

where tk are distinct points in C and the residue matrices Ak do not depend on λ. Such systems
are called Fuchsian systems.

Fixing λ0 = ∞ and imposing the normalization condition for the fundamental solution
�(λ0) = I one can define the monodromy matrices Mk ∈ SL(n, C), k = 1, . . . , N,∞,

of the analytic continuation of the fundamental solution � along the generators of the
fundamental group π1(CP 1\{t1, t2, . . . , tN ,∞}, λ0). The monodromy matrices satisfy the
relation M∞MN · · · M1 = I. A group generated by the monodromy matrices Mk is called
a monodromy representation of the fundamental group or a monodromy group. The
isomonodromy (or, equivalently, monodromy preserving) condition means that the matrices
Mk do not depend on the positions of the poles, i.e.

d

dti
Mk = 0.

Under certain non-resonance assumptions on the eigenvalues θk of the matrices Ak and
A∞ := −∑N

j=1 Aj one can show that the function � satisfies the following system:

∂

∂ti
� = − Ai

λ − ti
�, i = 1, . . . , N, (3)

in the case of the monodromy preserving deformations. The compatibility conditions of (2)
and (3) are known as the Schlesinger equations, or deformation equations,

∂Ak

∂ti
= [Ai,Ak]

ti − tk
, k �= i,

∂Ai

∂ti
= −

N∑
k=1,k �=i

[Ai,Ak]

ti − tk
, k = i.

When N = 3, t1 = 0, t2 = 1, t3 = t and n = 2, this system is equivalent to the sixth
Painlevé equation (PV I ). It is a nonlinear second-order differential equation whose solutions
are meromorphic on the universal cover of C\{0, 1} (for more information see [12, 18]).

Kitaev [15] introduced a notion of a special function of the isomonodromy type and
showed that most of the special functions of applied mathematics and mathematical physics
belong to this type. According to the definition of Kitaev, a function is called a special function
of the isomonodromy type if it defines a solution of the Schlesinger system (3), which is the
system of isomonodromy deformations of (2). In other words, when the function governs
isomonodromy deformations of a system of linear ordinary differential equations with rational
coefficients. Moreover, the function is called a linear special function of isomonodromy type
if system (2) has a triangular matrix A(λ), i.e. A(λ)ij = 0 for j > i. This definition provides a
unified approach to the theories of linear special functions (classical transcendental functions)
and the nonlinear special functions (functions of the Painlevé type). Some of the properties
of special functions can easily be derived via the isomonodromy approach [15].

The Gauss hypergeometric function is a linear special function of the isomonodromy type
as shown below following [15]. Take N = 3, t1 = 0, t2 = 1, t3 = t and n = 2 in (2) and
consider the system given by

d

dλ
� =

(
A0

λ
+

A1

λ − 1
+

At

λ − t

)
�, (4)

with the triangular matrices

Ak =
(

0 0
uk(t) 0

)
+ θkσ3.
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In addition, let us assume u0 + u1 + ut = 0. The Schlesinger equations give the following
system for the functions u0, u1, ut :

du0

dt
= 2θ0ut − 2θtu0

t
,

du1

dt
= 2θ1ut − 2θtu1

t − 1
, (5)

which is equivalent to the Euler differential equation (1) for u0 with

a = 2θt , b = 2θ0 + 2θ1 + 2θt , c = 2θ0 + 2θt + 1.

Similarly, the functions u1(t) and ut (t) solve (1) with a = 2θt , b = 2θ0 + 2θ1 + 2θt , c =
2θ0 + 2θt and a = 2θt + 1, b = 2θ0 + 2θ1 + 2θt , c = 2θ0 + 2θt + 1, respectively. Thus,
the functions uk are the hypergeometric functions. As mentioned above when the matrices
in (4) are not triangular, we have the nonlinear analogue of the hypergeometric function,
the sixth Painlevé equation, depending on four parameters. It is known [18] that (PVI) has
solutions expressed in terms of the hypergeometric functions for certain non-generic values
of its parameters.

2. Addition and middle convolution

Let M(n, C) be the space of n × n complex matrices. Assume that we are given a tuple of
matrices A = (A1, . . . , Ar), Ak ∈ M(n, C). Let us also fix points λ = tk ∈ C, k = 1, . . . , r,

and consider a Fuchsian system given by

d

dλ
�1 =

r∑
k=1

Ak

λ − tk
�1. (6)

Denote the residue matrix at infinity by A∞ = −∑r
k=1 Ak .

The operation of addition is simply the change of the eigenvalues of the residue matrix:
Ak → Ak + αIn, where α ∈ C, In is the identity matrix. Such a transformation is obtained by
a gauge transformation �1 → (λ − tk)

−α�1.
Further we discuss the Dettweiler and Reiter algebraic construction of Katz’s middle

convolution functor following [2–5].
By Katz’s theory [14] any irreducible rigid local system on the punctured affine line can be

obtained from a local system of rank 1 by applying a suitable sequence of middle convolutions
and scalar multiplications. Dettweiler and Reiter presented a purely algebraic analogue of
Katz’s middle convolution functor. Their additive version of middle convolution depends on
a scalar μ ∈ C and is denoted by mcμ. It is a transformation on tuples of matrices

(A1, . . . , Ar) ∈ (M(n, C))r → mcμ(A1, . . . , Ar) = (B̃1, . . . , B̃r ) ∈ (M(m, C))r

constructed as follows. We review the algorithm in detail because of the necessity to refer to
it in the following section.

First, for μ ∈ C one defines convolution matrices B = cμ(A) = (B1, . . . , Br) by

Bk =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 · · · 0
...

...
...

...
...

A1 · · · Ak−1 Ak + μIn Ak+1 · · · Ar

...
...

...
...

...

0 · · · 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ M(nr, C)

such that Bk is zero outside the kth block row.

3
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The convolution matrices define a new Fuchsian system with nr equations and with the
same number of singularities as in the original Fuchsian system:

d

dλ
�2 =

r∑
k=1

Bk

λ − tk
�2. (7)

The relation between the convolution operation cμ and the Euler integral transformation
between solutions of systems (6) and (7) is described in [5, sections 4, 5] (see also
[8, section 2] for a summary). System (7) may be reducible with the following invariant
subspaces:

L = ⊕r
k=1Lk, Lk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
Ker(Ak)

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(kth entry), k = 1, . . . , r, (8)

and

K =
r⋂

k=1

Ker(Bk) = Ker(B1 + · · · + Br). (9)

Let us fix an isomorphism between C
nr/(K + L) and C

m for some m. The matrices
B̃ = mcμ(A) = (B̃1, . . . , B̃r ) ∈ M(m, C), where B̃k is induced by the action of Bk on
C

m � C
nr/(K + L), are called the middle convolution matrices of A. Thus, the resulting

irreducible Fuchsian system with m equations is given by

d

dλ
�3 =

r∑
k=1

B̃k

λ − tk
�3, (10)

and this procedure is called the additive version of the middle convolution with parameter μ.
The Dettweiler and Reiter algorithm can formally be applied to any Fuchsian system,

not necessarily the rigid one. It guarantees that the resulting linear system is irreducible
and has the same number of singularities as the initial Fuchsian system. Moreover, the
deformation equations, if any, are preserved [10]. However, the dimension of matrices of the
resulting Fuchsian system may change, and, hence, the number of equations of the Fuchsian
system may be different. As mentioned above, the Fuchsian systems before and after middle
convolution are related by the Euler integral transformation along a Pochhammer contour
[5, section 4]. This algebraic interpretation of middle convolution proved to be useful for a
number of problems. For instance, the integral transformation between solutions of the Heun
equation can be rediscovered if middle convolution is applied to the hypergeometric system
of the Heun equation as shown in [8]. In [7] the algorithm is applied to the general 2 × 2
Fuchsian system with four singularities. The deformation equation is then the sixth Painlevé
equation with generic values of the parameters. The middle convolution transformation yields
Okamoto’s birational transformation for the deformation equation. Since the sixth Painlevé
equation has solutions expressed in terms of the hypergeometric functions for certain non-
generic values of the parameters [18], it is a natural question to ask what happens to system
(4) under addition and middle convolution transformations. Thus, the main objective of the
current paper is to study the compositions of addition and middle convolution transformations

4
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of system (4) in detail. This will contribute to the theory of integral transformations
of differential equations and its connection to linear and nonlinear special functions
(e.g. [8, 17, 19]).

3. Middle convolution and the hypergeometric equation

In this section we first apply different additions to system (4) and then study the effect of the
middle convolution transformation. We are interested in the type of equations we get and, if
the resulting system is also 2 × 2, what kind of relations we obtain for the hypergeometric
functions.

Case 1. Shifting the eigenvalues of the residue matrices in (4) by addition � = λ−θ0(λ −
1)−θ1(λ − t)θt �1 we start with the system (6) with

A1 =
(

2θ0 0
u0(t) 0

)
, A2 =

(
2θ1 0

u1(t) 0

)
, A3 =

(
0 0

ut (t) −2θt

)
.

We apply the middle convolution algorithm with parameter μ not equal to the eigenvalues
of the residue matrix at λ = ∞. We also assume that μ �= 0. This is a generic case. In
this case the convolution matrices are of dimension nr = 6. The corresponding system (7) is
reducible. The invariant subspace K in (9) is empty and the subspace L in (8) is spanned by
three vectors in C

6. The quotient space C
3 � C

6/(K + L) is constructed by adding three more
vectors to the basis of the invariant subspaces, for instance, vectors e1, e3 and e5, where ek has
1 at position k and other elements are equal to zero. In general, the result might be slightly
different if we choose different vectors.

Thus, for generic values of the parameter μ in middle convolution we get 3 × 3 linear
system (10) with

B̃1 =
⎛⎝2θ0 + μ 2θ1 0

0 0 0
0 0 0

⎞⎠ , B̃2 =
⎛⎝ 0 0 0

2θ0 2θ1 + μ 0
0 0 0

⎞⎠ ,

B̃3 =

⎛⎜⎝ 0 0 0
0 0 0

2θ0 − 2θt u0(t)

ut (t)
2θ1 − 2θt u1(t)

ut (t)
−2θt + μ

⎞⎟⎠ .

The eigenvalues of the residue matrix of (10) at λ = ∞ are equal to −2(θ0 + θ1) − μ,

2θt − μ,−μ. Thus, we get a 3 × 3 system (10) with the matrices as above, which is
parameterized by the hypergeometric functions similar to system (4).

To obtain a 2 × 2 system one needs to fix the parameter of middle convolution equal to
one of the eigenvalues of A∞ of the initial system (6). Take μ = −2(θ0 + θ1). The resulting
system (10) has the following residue matrices:

B̃1 =
(−2θ1 0

−2θ1 0

)
, B̃2 =

(−2θ0 0
0 0

)
,

B̃3 =
(

0 0

− 2(θ1u0(t)+(θ1+θt )u1(t))

ut (t)
−2(θ0 + θ1 + θt )

)
.

Here the quotient space C
2 � C

6/(K + L) is constructed by adding e3, e5 to the basis of the
invariant subspaces.

5
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To reduce this system to the initial form (6), we need to apply the gauge transformation
with the matrix

D =
(

u0(t)+u1(t)

u1(t)
0

1 f (t)

)
,

with the function f (t) to be determined. Thus, we have a new Fuchsian system with four
singularities and the residue matrices

D−1B̃1D =
( −2θ1 0

− 2θ1u0(t)

f (t)u1(t)
0

)
, D−1B̃2D =

(
−2θ0 0

2θ0
f (t)

0

)
,

D−1B̃3D =
(

0 0
2θ1u0(t)−2θ0u1(t)

f (t)u1(t)
−2(θ0 + θ1 + θt )

)
.

This system is already of the type as the initial system. Therefore, one can check directly the
validity of the following statement.

Theorem 1. Let u0(t), u1(t) and ut (t) with u0(t) + u1(t) + ut (t) = 0 satisfy (1) with

a0 = 2θt , b0 = 2(θ0 + θ1 + θt ), c0 = 2(θ0 + θt ) + 1;
a1 = 2θt , b1 = 2(θ0 + θ1 + θt ), c1 = 2(θ0 + θt );
at = 2θt + 1, bt = 2(θ0 + θ1 + θt ), ct = 2(θ0 + θt ) + 1.

Then the operations of addition and middle convolution with parameter μ = −2(θ0 + θ1)

applied to system (4) give new solutions of (1) given by

ũ0(t) = − 2θ1u0(t)

f (t)u1(t)
, ũ1(t) = 2θ0

f (t)
, ũt (t) = 2θ1u0(t) − 2θ0u1(t)

f (t)u1(t)
,

where

f ′(t) = 2f (t)
θ1u0(t) + (θ1 + θt )u1(t)

u1(t)(t − 1)
,

and the parameters are given by

ã0 = 2(θ0 + θ1 + θt ), b̃0 = 2θt , c̃0 = 2(θ0 + θt ) + 1;
ã1 = 2(θ0 + θ1 + θt ), b̃1 = 2θt , c̃1 = 2(θ0 + θt );
ãt = 2(θ0 + θ1 + θt ) + 1, b̃t = 2θt , c̃t = 2(θ0 + θt ) + 1.

Example. Take θ0 = θ1 = θt = 1/3 and let

u0(t) = (−1)2/3(t + 1)c1

(1 − t)1/3t4/3

be a particular solution of the hypergeometric equation (1). The functions u1(t) and ut (t) can
be found from the Schlesinger system (5) and condition that the sum of these three functions
is zero. The function f (t) can be calculated explicitly by

f (t) = (t − 1)4/3t1/3c2

t − 2
.

Here, c1, c2 are arbitrary constants. Thus, we get a new triple of functions

ũ0(t) = 2(t + 1)

3(t − 1)1/3t4/3c2
, ũ1(t) = 2(t − 2)

3(t − 1)4/3t1/3c2
, ũt (t) = 2 − 4t (t − 1)

3(t − 1)4/3t4/3c2

which are the hypergeometric functions with new values of the parameters.
6
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Let us consider another choice of the parameter μ in middle convolution which also leads
to 2 × 2 system, namely μ = 2θt . In this case the resulting Fuchsian system (10) has the
following residue matrices:

B̃1 =
(

2(θ0 + θt ) 2θ1

0 0

)
, B̃2 =

(
0 0

2θ0 2(θ1 + θt )

)
, B̃3 = O2,

where O2 is a 2 × 2 zero matrix. Applying the gauge transformation

D =
(− θ1

θ0
1

1 1

)
we can write the scalar differential equation for the first component ψ1

3 of the solution vector
�3 = (

ψ1
3 , ψ2

3

)tr
of the resulting system. This gives the hypergeometric equation with

parameters a = −2θt , b = 1 − 2(θ0 + θ1 + θt ), c = 1 − 2(θ0 + θt ).

Case 2. This case is similar to case 1. We start with the matrices

A1 =
(

2θ0 0
u0(t) 0

)
, A2 =

(
0 0

u1(t) −2θ1

)
, A3 =

(
0 0

ut (t) −2θt

)
which are obtained from (4) by addition � = λ−θ0(λ − 1)θ1(λ − t)θt �1. Middle convolution
with μ = −2θ0 shows that the first residue matrix is equal to 2 × 2 zero matrix and two other
matrices in (10) are constant with respect to t after a gauge transformation. Thus, we have the
case similar to the case above.

Fixing μ = 2(θ1 + θt ), we have a statement similar to theorem 1.

Theorem 2. Let u0(t), u1(t) and ut (t) be as in theorem 1. Then the operations of addition
and middle convolution with parameter μ = 2(θ1 +θt ) applied to system (4) give new solutions
of (1) given by

ũ0(t) = −2(θ0 + θ1 + θt )

f (t)
, ũ1(t) = 2θt (θ0 + θ1 + θt )u1(t)

f (t)(θ1u0(t) + (θ1 + θt )u1(t))
,

ũt (t) = 2θ1(θ0 + θ1 + θt )(u0(t) + u1(t))

f (t)(θ1u0(t) + (θ1 + θt )u1(t))
,

where

f ′(t) = 2θ1f (t)
(θ0 + θt )u0(t) + θ0u1(t)

t (θ1u0(t) + (θ1 + θt )u1(t))

and the parameters are given by

ã0 = −2θ1, b̃0 = 2θ0, c̃0 = 2(θ0 + θt ) + 1;
ã1 = −2θ1, b̃1 = 2θ0, c̃1 = 2(θ0 + θt );
ãt = 1 − 2θ1, b̃t = 2θ0, c̃t = 2(θ0 + θt ) + 1.

We remark again that the result depends on the choice of the isomorphism between C
2

and C
6/(K + L) so by another choice of the basis one might get different formulae. Here we

added e1 and e3 to the basis.
Example above gives f (t) = c2t

4/3/(1 − 4t + t2) and a new triple of functions

ũ0(t) = −2(1 + t (t − 4))

c2t4/3
, ũ1(t) = 2(t − 2)

c2t1/3
, ũt (t) = 2(1 − 2t)

c2t4/3

which are the hypergeometric functions with (̃a, b̃, c̃) given by (2/3, 2/3, 7/3), (−2/3,

2/3, 4/3) and (1/3, 2/3, 7/3) respectively (compare with initial hypergeometric functions

7
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u0(t), u1(t) and ut (t) with the values (a, b, c) given by (2/3, 2, 7/3), (2/3, 2, 4/3) and
(5/3, 2, 7/3), respectively).

Case 3. By the operation of addition � = λθ0(λ − 1)θ1(λ − t)θt �1, we shift the eigenvalues
of the system (4) in such a way that the residue matrices of (6) are given by

A1 =
(

0 0
u0(t) −2θ0

)
, A2 =

(
0 0

u1(t) −2θ1

)
, A3 =

(
0 0

ut (t) −2θt

)
.

Note that by this transformation we basically remove the first component of vector �1

from the consideration in middle convolution. Applying mcμ with μ = 2(θ0 + θ1 + θt ), we get
the resulting residue matrices of the form

B̃1 =
(

2θ1
2θ1ut (t)

u1(t)
2θt u1(t)

ut (t)
2θt

)
, B̃2 =

(
2(θ0 + θt ) − 2θ1ut (t)

u1(t)

0 0

)
,

B̃3 =
(

0 0
2θt u1(t)

u0(t)+u1(t)
2(θ0 + θ1)

)
(with the choice of vectors e3 and e5). Using the gauge transformation

D =
(

u0(t)+u1(t)

u1(t)
− θ1(u0(t)+u1(t))

θt u1(t)

1 1

)
we observe that the residue matrices become independent of the variable t, namely

D−1B̃1D =
(

0 0
0 2(θ1 + θt )

)
, D−1B̃2D =

( 2θt (θ0+θ1+θt )

θ1+θt
− 2θ0θ1

θ1+θt

− 2θt (θ0+θ1+θt )

θ1+θt

2θ0θ1
θ1+θt

)
,

D−1B̃3D =
( 2θ1(θ0+θ1+θt )

θ1+θt

2θ0θ1
θ1+θt

2θt (θ0+θ1+θt )

θ1+θt

2θ0θt

θ1+θt

)
.

Thus, we can write the equation for the first component of the solution vector �3 = (
ψ1

3 , ψ2
3

)tr
.

It appears to be the Heun equation where one can choose the parameters

α = −2(θ0 + θ1 + θt ), β = 1 − 2(θ0 + θ1 + θt ),

γ = −2(θ1 + θt ), δ = 1 − 2(θ0 + θt ),

q = 4(θ0 + θ1 + θt )(θ1 + θt t).

Here, the Heun equation is given by

y ′′ +

(
γ

λ
+

δ

λ − 1
+

ε

λ − t

)
y ′ +

αβλ − q

λ(λ − 1)(λ − t)
y = 0,

where ′ = d/dλ and ε = 1 + α + β − γ − δ.

Case 4. Finally, we consider addition � = λ−θ0(λ − 1)−θ1(λ − t)−θt �1 so that to shift the
eigenvalues of the system (4) in such a way that the residue matrices of (6) are given by

A1 =
(

2θ0 0
u0(t) 0

)
, A2 =

(
2θ1 0

u1(t) 0

)
, A3 =

(
2θt 0

ut (t) 0

)
.

Note that the first component of vector � = (ψ1, ψ2)tr in (4) is given by λθ0(λ−1)θ1(λ−t)θt up
to a constant and by this addition we remove the second component from the consideration in

8
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the middle convolution transformation. Thus, we expect to get a rigid system. An interesting
case is to consider middle convolution with the generic value of the parameter μ. We get
system (10) with

B̃1 =
⎛⎝2θ0 + μ 2θ1 2θt

0 0 0
0 0 0

⎞⎠ , B̃2 =
⎛⎝ 0 0 0

2θ0 2θ1 + μ 2θt

0 0 0

⎞⎠ ,

B̃3 =
⎛⎝ 0 0 0

0 0 0
2θ0 2θ1 2θt + μ

⎞⎠ .

Here, the vectors e1, e3 and e5 are added to the basis of invariant subspaces. One can write
down the scalar equation for the first component of solution �3 = (

ψ1
3 , ψ2

3 , ψ3
3

)tr
of the

resulting system and it appears to be [9] the Jordan–Pochhammer equation of order 3 with
parameters ρ = μ − 2, a1 = 2θ0, a2 = 1 + 2θ1, a3 = 1 + 2θt and singularities t1 = 0,

t2 = 1, t3 = t .

The definition of the Jordan–Pochhammer equation is as follows [16]. Let p (λ) and q (λ)

be the polynomials of degree n and n − 1 respectively defined by

p(λ) =
n∏

j=1

(λ − tj ), (λi �= λj , i �= j),

q(λ)

p(λ)
=

n∑
j=1

aj

λ − tj
,

where aj are constants. Then the Jordan–Pochhammer equation is expressed in the form

p(λ)y(n) = pn−1(λ)y(n−1) + · · · + p1(λ)y ′ + p0(λ)y,

where

pn−l (λ) = (−1)l−1

((
ρ + l − 1

l

)
p(l)

n (λ) +

(
ρ + l − 1

l − 1

)
q

(l−1)
n−1 (λ)

)
, l = 1, 2, . . . , n,

ρ being a parameter. The Jordan–Pochhamer equation is a Fuchsian equation without
accessory parameters and when n = 2 it reduces to the hypergeometric equation with
t1 = 0, t2 = 1 and ρ, a1, a2 expressed in terms of the parameters a, b, c of (1).

If one fixes the value of the parameter of middle convolution to μ = −2(θ0 + θ1 + θt ),
then similarly to case 3 one can get the Heun equation for the first component of the vector
�3. The second component can be considered by analogy.

4. Conclusions

We have studied various compositions of addition and middle convolution transformations of
system (4) which is related to the hypergeometric equation via isomonodromy deformations.
We have investigated the cases when the resulting system (10) is either of the same type
and we can get transformations described in theorems 1 and 2 or when it is related to other
famous scalar differential equations. The results presented in this paper might be useful in
a variety of mathematical and physical problems in which hypergeometric functions appear.
The construction of the analogue of middle convolution for systems with irregular singularities
is an open problem and this will lead to nontrivial relations between special functions of the
confluent type.
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